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Abstract

Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite,
graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy)
molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous
Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the
main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all
investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies
(more than 20 cm−1), and appearance of new modes about 1,400 and 1,500 cm−1. The D band in CARS spectra is less
changed than the G band; there is an absence of 2D-mode at 2,600 cm−1 for graphene and appearance of intensive
modes of the second order between 2,400 and 3,000 cm−1. Multiphonon processes in graphene under many photon
excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS
signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable
mechanism of CARS enhancement is discussed.

Keywords: Graphene oxide (GO); Graphene nanoplatelets (GNPs); Multiwall carbon nanotubes (MWCNTs); Highly
oriented pyrolytic graphite (HOPG); Thymine, Surface-enhanced Raman scattering (SERS); Coherent anti-Stokes Raman
scattering (CARS); Surface-enhanced coherent anti-Stokes Raman scattering (SECARS); Graphene oxide-enhanced
coherent anti-Stokes Raman scattering (GECARS)
Background
Enhancement of optical signals (Raman scattering, infra-
red absorption (IR), and luminescence) from molecules
adsorbed on the surface of nanostructured metals was
considered in many papers published recently. The
nanostructured gold, platinum, silver, copper, and other
metals were used for the achievement of the enhance-
ment effect. The enhancement factor could achieve 106

for Raman scattering and 103 for IR absorption and
luminescence [1,2]. Moreover, surface-enhanced Raman
scattering (SERS) effect allowed registration of the signal
from a single molecule adsorbed on the nanostructured
surface [3]. The mechanism of this effect possesses dual
* Correspondence: gd@iop.kiev.ua
1Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauki Ave,
Kyiv 03680, Ukraine
Full list of author information is available at the end of the article

© 2014 Dovbeshko et al.; licensee Springer. Thi
Commons Attribution License (http://creativeco
reproduction in any medium, provided the orig
electromagnetic (EM) and chemical (CM) nature and is
the matter of debate in the literature [1-4].
Earlier, we have registered enhancement in Raman and

IR spectra of different biomolecules adsorbed on carbon
nanostructures: single-wall carbon nanotubes (SWCNTs)
and graphene nanoflakes [5-7]. The maximum enhance-
ment factor for Raman scattering of such nucleobases as
thymine and adenine adsorbed on SWCNT was 10. It
could be up to 80 on graphene oxide (GO) [8]. It is
known from the literature that graphene could be used
as enhancing support with enhancement factor from 17
to 69 [9-11].
The coherent anti-Stokes Raman scattering (CARS)

technique is rather complex [12-14], and we found only
a few papers devoted to its application for studying bio-
molecules [15-18]. The enhancement of CARS signal for
molecules localized on nanostructured gold surface with
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an enhancement factor of approximately 105 was pub-
lished in [17]. It was also established that this method is
attractive for visualization of macromolecules and cell
components [19].
In the present paper, we used CARS to study dif-

ferent carbon nanostructured materials (highly oriented
pyrolytic graphite (HOPG), multiwall carbon nanotubes
(MWCNTs), graphene nanoplatelets (GNPs), and GO) as
well as the surface-enhanced coherent anti-Stokes Raman
scattering (SECARS) effect for thymine (Thy) adsorbed
on GO.

Methods
Samples
Thy was purchased from Sigma-Aldrich (St. Louis, MO,
USA) and used as received. The MWCNTs (Spetsmash,
Kiev, Ukraine) have been synthesized by CVD method
using Al2FeMo0,21 as a catalyst. The carbon content in
the sample was 99.2% with soot as a residue; the catalyst
was not found. The diameters of the MWCNTs varied
from 2 to 40 nm; the surface area was 350 m2/g. The
material has been certified by high-resolution transmis-
sion electron microscopy and Raman scattering [20].
GO was synthesized from graphite using mechano-

chemical approach to exfoliate microflakes accordingly
[21]. During the synthesis, sulfuric acid was added to
the mixture of the graphite microflakes (#043480, Alfa
Aesar, Ward Hill, MA, USA) and KMnO4 as an oxidant
and then it was mechanochemically treated using a
planetary ball mill. The product of the mechanochemical
treatment was washed on a glass filter by distilled water
to remove the residues of the reagents soluble in water
and undesirable products of the oxidation reaction, then
by aqueous hydrochloric acid to remove manganese ox-
ides insoluble in water, which were formed as a result of
reduction of KMnO4, and finally with water to remove
the residue of the acid. The product was placed in water
where it quickly swelled and formed a stable dispersion
of GO which was used thereafter. The prepared GO had
C:H:O equal to 1.2:0.58:1.0 and an absorption maximum in
UV-vis spectrum at 230 nm. It consisted of mono- and
few-layered particles according to AFM and possessed
photoluminescence with maximum of about 450 nm.
We used the GNPs produced by the Nikolaev Insti-

tute of Inorganic Chemistry, Siberian Branch of RAS
(Novosibirsk, Russia). In accordance with the data of
X-ray analysis and Raman spectroscopy, the GNPs pre-
dominantly consisted of 10 to 15 graphene layers with par-
tial contribution of two- to three-layered nanoparticles.
The lateral size of the GNPs was in the range from 5 to
9 μm [22]. The graphene monolayer on Cu foil was pur-
chased from Aldrich, and HOPG was produced by State
Scientific Research Institute of Structural Graphite Based
Materials ‘NII Graphite’ (Moscow, Russian Federation).
The stock aqueous solution of Thy (1 mg/ml) was first
prepared and then divided into two aliquots. One part of
the solution was taken for further experiments. Another
part of the stock solution was ultrasonically mixed
(15 min), with a definite amount of the GO to obtain
Thy/GO = 100:1 weight ratio. The samples for further
studies were prepared by depositing a drop of Thy or
Thy/GO solution on a glass substrate for CARS and on a
metallic surface for the Raman experiments.

Raman measurements
The Raman spectra of the monolayer graphene on Cu
and HOPG were registered by inVia Raman microscope
(Renishaw, Wotton-under-Edge, UK) using a laser with
633-nm wavelength and spot size of 1 μm. The Raman
spectra of the MWCNTs, GO, and GNPs were also reg-
istered by inVia Raman microscope (Renishaw) using a
diode laser with a wavelength of 785 nm. The SERS ana-
lysis of Thy/GO and Thy/MWCNT complexes was per-
formed using the same laser. The band of Si at 520 cm−1

was used as the reference for wavenumber calibration.
The WiRE 3.4 software (Renishaw) was used for Raman
data acquisition and data analysis.
Carbon materials can be effectively characterized by

Raman spectroscopy. The main feature of Raman spec-
tra of graphite structure is the so-called ‘G band’
(1,600 cm−1) with E1g band symmetry [23] in the Γ point
of the Brillouin zone that correlates with the ordering of
graphite crystal lattice. The second feature of graphite-
like materials is the so-called ‘D band’ that characterizes
the disorder of graphene layer lattice [24]. It refers to
breathing vibrations of rings of graphene layer in the K
point of the Brillouin zone. The second-order mode
of this vibration (2D band) is registered at 2,600 to
2,700 cm−1, and it has an intensity which usually exceeds
that of the second-order vibrations [25]. The last fact
could be the evidence of carbon nanostructures consist-
ing of similar structures that manifest a strong electron-
phonon interaction and strong dispersion dependence of
D-mode [24,25]. The characteristic feature of the Raman
spectra of MWCNTs is that the halfwidth is equal to
50 cm−1 for the G-mode and above 60 cm−1 for the
D-mode, and the D/G intensity ratio is greater than 1. The
position of the G and D bands, appearance of breathing
mode and its position, halfwidth, and relative intensity of
all the bands could be used for the characterization of the
nanotubes and their diameters.
The Raman spectrum of the graphene monolayer

contains G and 2D bands analogous to graphite. The
Raman spectrum of the GNPs and GO contains G,
D, and 2D bands analogous to MWCNTs. The position
of the 2D band maximum could be used as a characteris-
tic to determine the number of layers in the graphene
sheets [26].



Figure 1 Schematic band energy diagram showing transitions in different Raman processes. In CARS, the pump (green arrow) and the
Stokes (red arrow) beams drive the molecular vibrations. Through further interaction with the pump (another green arrow) beam, the blue-shifted
photon (blue arrow) is emitted and detected.

Dovbeshko et al. Nanoscale Research Letters 2014, 9:263 Page 3 of 11
http://www.nanoscalereslett.com/content/9/1/263
CARS measurements
CARS phenomenon is based on nonlinear interaction of
two incoming optical fields on frequency ωp (pump) and
ωS (Stokes) with material, which results in the gener-
ation of blueshifted anti-Stokes light with frequency
ωAS = 2ωp − ωS. Enhancement of the field on frequency
ωAS takes place when the frequency difference 2ωp − ωS

coincides with the frequency of molecular vibrations of
the studied material. Thus, tuning ωp while keeping ωS

constant and detecting anti-Stokes light intensity, we
could obtain CARS spectra containing information about
the vibrational spectrum of the material. By spatial scan-
ning the considered object at some fixed ωAS, we obtain
a high-resolution image of the spatial distribution of
the molecules possessing this particular vibrational band
(Figure 1).
The experimental setup was described elsewhere [27].

Briefly, it is based on a home-made CARS micro-
scope with compact laser source (EKSPLA Ltd., Vilnius,
Lithuania). The laser consists of a picosecond (6 ps)
frequency-doubled Nd:YVO4 pump laser with a pulse
repetition frequency of 1 MHz and equipped with a trav-
elling wave optical parametric generator (OPG) with a
turning range from 690 to 2,300 nm. For CARS imple-
mentation, the OPG radiation was coupled with a funda-
mental laser radiation (1,064 nm) used as pump and
Stokes excitation beams, respectively. Such mixing pro-
vides probing within the 700 to 4,500 cm−1 range of vi-
bration frequencies. Both Stokes and pump beams were
collinearly combined and directed to an inverted micro-
scope (Olympus IX71, Center Valley, PA, USA). A spatial
filter was used to improve the beam profile before direct-
ing into the microscope. The excitation light was fo-
cused on the sample with an oil immersion objective
Table 1 Operating CARS frequency

CARS registration
range (cm−1)

Stokes (nm) Pump (nm) Anti-Stokes
(or CARS) (nm)

1,200 to 1,700 1,064 940 to 900 850 to 780

2,500 to 3,500 1,064 840 to 775 690 to 610
(Plan Apochromat, ×60, NA 1.42, Olympus). In the for-
ward detection scheme, the CARS light was collected
by another objective with NA 0.4. Long-pass and
short-pass filters were used as blocking tools for spec-
tral separation of the CARS signal. CARS radiation
was detected using the avalanche photodiode (SPCM-
AQRH-14, Perkin Elmer, Waltham, MA, USA) con-
nected to a multifunctional board PCI 7833R (National
Instruments Ltd. Dresden, Germany).
Measurements of the CARS spectra were performed in

high-wavenumber region of Raman spectrum by tuning
the OPG frequency (Table 1). In order to account for
the spectral dependence of the OPG generation effi-
ciency, the CARS signal intensity was normalized to the
second power of the OPG radiation intensity. The spec-
tral resolution of the CARS setup was approximately
8 cm−1. The spectra were recorded with a typical detec-
tion rate of 5 cm−1/s.
A Piezo scanning system (Physik Instrumente GmbH

& Co., Karlsruhe, Germany) was used for scanning the
samples. Images of 250 × 250 pixels were obtained with
2-ms pixel dwell time. Excitation pulse energies from 1
Figure 2 Raman spectra of HOPG and monolayer graphene and
CARS spectrum of HOPG. Raman spectra of HOPG (1) and
monolayer graphene on Cu (3) at λex = 633 nm. CARS spectrum of
HOPG (2).



Figure 3 Raman (1) at λex = 785 nm and CARS (2) spectra
of MWCNTs.

Figure 5 Raman at λex = 785 nm (a) and CARS (b) spectra of
GNPs (1) and GO (2).
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to 10 nJ of the samples for both pump and Stokes beams
were used. Sample scanning, data processing, and laser
wavelength tuning were controlled with a computer.
The excitation light was focused on the sample with an
oil immersion objective (Plan Apochromat, ×60, NA
1.42, Olympus). This numerical aperture of the focusing
objective provides tight focusing of NIR exciting light
with effective lateral point spread function of about
0.4 μm. The corresponding axial point spread function is
about 1.0 μm. Thus, the CARS images in this paper have
resolutions of approximately 0.5 μm in the X and Y di-
rections, and approximately 1.0 μm in the Z direction.

Results and discussion
Raman and CARS spectra of the carbon materials
The CARS and Raman spectra of the different carbon
materials such as HOPG and monolayer graphene on
Cu are presented in Figure 2 for comparison. The CARS
spectra of the graphene monolayer on Cu foil could not
be registered due to technical reasons; it was wrapped
Figure 4 CARS images at 1,350 cm−1 (a) and 1,310 (b) cm−1 of MWCN
and burned. It is seen that the position of the G-mode
(1,580 cm−1) for HOPG and monolayer graphene is ap-
proximately the same with that in the Raman spectra.
However, a definite high-frequency shift of 7 cm−1 is ob-
served for this mode in the CARS spectrum of HOPG.
Ts.



Figure 6 CARS (1) and Raman at λex = 785 nm (2) spectra
of GNPs.
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The position of 2D-mode maximum in the Raman
spectrum of HOPG is blueshifted by 41 cm−1 rela-
tively to that of the monolayer graphene, the form of the
band being asymmetric with a shoulder at approximately
2,640 cm−1, a characteristic position of the band for the
monolayer graphene.
The CARS and Raman spectra of MWCNTs are pre-

sented in Figure 3. The band in the Raman spectrum of
MWCNTs about 1,600 cm−1 is asymmetric, consisting of
G-mode at 1,585 cm−1 and D′-mode at 1,611 cm−1. The
G-mode in the CARS spectrum of MWCNTs is seen as
a weak shoulder only (Figure 3) as compared with the
strong new band at 1,527 cm−1 (denoted here as GCARS)
and the shoulder at 1,416 cm−1. In contrary to the
Raman and CARS spectra of HOPG, the spectrum of
MWCNTs contains D-mode which is indicative of the
presence of defects. The Raman spectrum also contains
several low-frequency modes (inset in Figure 3) whose
positions could be used to determine the internal and
external diameters of the nanotubes.
Figure 7 CARS images of GNPs using the bands at 1,300 cm−1 (a), 2,4
The images of the MWCNTs obtained using D-mode
at 1,310 cm−1 are shown in Figure 4. Since CARS is a
four-wave mixing (FWM) process, there are two contri-
butions to the measured anti-Stokes signal: vibrational
and electronic. The CARS spectrum of the MWCNTs
has no distinct vibrational bands (Figure 3). That means
that the contrast of the image has a predominantly elec-
tronic nature in accord with the earlier observations of
the SWCNTs by FWM microscopy [28]. Moreover, in
our case, the MWCNTs are located on the glass surface,
and the scanning beam probes captured not only the
MWCNTs but also the glass, so the contribution from
the glass reduces the image contrast (Figure 4). Never-
theless, the lateral image recorded at the fixed value of
z coordinate possesses a rather good contrast which
allowed us to identify reliably the size of MWCNTs
(Figure 4a,b). It appeared to be equal approximately
to 15 μm in length and approximately 250 nm in width.
The image of the MWCNTs has the same intensity
throughout the length which indicates a uniform distri-
bution of defects.
The CARS and Raman spectra of the GNPs and GO

are presented in Figure 5. It could be seen that the spec-
tra are definitely different from each other for both car-
bon materials. For instance, the G-mode in the Raman
spectrum of the GNPs is at 1,582 cm−1, whereas in the
CARS spectrum, it is shifted to 1,555 cm−1. It is obviously
strong and located at 1,595 cm−1 in the Raman spectrum
of the GO, whereas it is about 1,584 cm−1 in the CARS
spectrum in a form of a weak shoulder on the background
of the strong band at 1,516 cm−1. Analogously to the CARS
spectrum of MWCNTs (Figure 3), the highly intensive
GCARS-mode at 1,516 cm−1 in the CARS spectrum of GO
is observable. New arising bands at 1,419 and 1,516 cm−1

in GO and at 1,500 and 1,555 cm−1 in GNPs could be
assigned to the vibrations from the edge atoms, and also
60 cm−1 (b), and 2,960 (c) cm−1.



Table 2 CARS bands of the different carbon materials

Assignment GNP (cm−1) GO (cm−1) MWCNT (cm−1) HOPG (cm−1)

D 1,300 1,306 1,310 Not detected

New band Not detected 1,419 1,421 Not detected

New band 1,500 1,516 1,527 Not detected

G 1,555 1,584 1,590 1,587

D′ Not detected Not detected Not measured Not measured

2D (G′) Not detected Not measured Not measured Not measured

D + D1 2,460 Not measured Not measured Not measured

2GCARS 2,960 Not measured Not measured Not measured
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according to [14], the first principal calculation showed
new emerging bands at 1,450 and 1,530 cm−1.
The position of D-mode in CARS and Raman spectra is

approximately the same. Besides, it is worthwhile to mark
the widening of the D-mode in the case of the CARS spec-
tra of GNPs and the redistribution between ID and IG in
the CARS spectra relatively to the Raman analogues.
Another feature of the interrelation between Raman

and CARS spectra is observed in the 2,400 to 3,200 cm−1

range. The corresponding spectra of the GNPs are pre-
sented in Figure 6. It is seen that the Raman spectrum of
the GNPs has a usual form, as represented by the strong
2D-mode at 2,595 cm−1. At the same time, this mode is
absent in the CARS spectrum, while there appeared an-
other two strong band frequencies which are 2,460 and
2,960 cm−1 (Figure 6). It could be supposed that the first
is a combination of D-mode with a mode at approxi-
mately 1,150 cm−1 (D1) which corresponds to a phonon
belonging to a point other than K and Γ of the Brillouin
zone [29], and the second is probably a double resonance
of the 1,516 cm−1 band. The disappearance of the 2D-
mode is supposed to be connected with specificity of the
CARS technique and the absence of the conditions for
double electron-phonon resonance. Simultaneously, in the
region of the second tones, we registered more bands than
the usual, so multiphonon processes [30,31] could occur
more efficiently.
The modes near 2,460 cm−1 as well as those in the

region of 2,400 to 3,200 cm−1 are assigned to overtones
[26]. Nemanich and Solin [24] have registered a band
at 3,250 cm−1 and a weaker band at 2,450 cm−1 in the
Table 3 Raman bands of the different carbon materials

Assignment GNP
(cm−1)

GO
(cm−1)

MWCNT
(cm−1)

HOPG
(cm−1)

D-mode 1,307 1,312 1,314 Not detected

G-mode 1,582 1,595 1,589 1,580

D′ 1,605 Not detected 1,611 Not detected

G′-mode (2D) 2,595 2,616 2,615 2,684

D + D′ (or D + G) 2,902 Not detected Not detected Not detected
Raman spectra of graphite. The last band was named as
D″ by Vidano and Fishbach [25,32]. Later, Nemanich
and Solin, using polarization measurement, assigned
the peaks in the 2,300- to 3,250-cm−1 region to over-
tones in graphite [24], and the 2,950-cm−1 band to
D +D′ (D′-mode at 1,620 cm−1 is due to disorder) rather
than to D +G. Vidano and Fishbach [25] confirmed that
Figure 8 CARS spectra of Thy/GO (1), Thy (2) and GNPs (3).
CARS spectra of Thy/GO (1) and Thy (2) in 1,200 to 1,700 cm−1

(a) and CARS spectra of Thy/GO (1), Thy (2), and GNPs (3) in 2,400
to 3,200 cm−1 (b) ranges.
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the 3,250-cm−1 band is the D′ overtone, analogous to the
band at 2,700 cm−1 which is the D overtone named G′.
Interestingly, those bands do not shift with excitation en-
ergy, and the energy dependence of the 2,950-cm−1 band is
consistent with D +D′ or D +G.
The CARS images of the GNPs obtained using the dif-

ferent bands are presented in Figure 7. The distribution
of the intensity of the CARS bands could be obviously
seen: the intensities of the bands at 2,460 and 2,960 cm−1

are similar, where the intensity of the signal at 2,960 cm−1

is higher, so the image obtained using this band is
brighter. Both the images and the spectrum of the
GNPs have essentially vibrational origin. In accordance
to [10] and Figure 7 (more bright imaging at the end of
particles), we could suppose about the increase of the
local electromagnetic field at the edges of the different
graphene particles.
The modes found by using Raman and CARS spec-

troscopy in different carbon materials are summarized in
Tables 2 and 3. Based on the presented data, it could be
concluded that the position of the D-mode of the stud-
ied materials is close for Raman and CARS spectra; this
is in contrary to that of the G-mode, which, in the CARS
spectra, is significantly decreased on the background of
the new intensive mode (GCARS), depending on the type
of the carbon material.

Raman and CARS spectra of the Thy/GO complex
The CARS spectra of Thy and the Thy/GO complex
are shown in Figure 8. It is seen that the bands of Thy
Figure 9 CARS (a,b,c,d,e) images of the Thy/GO complex.
were shifted from 1,355 and 1,660 cm−1 to 1,365 and
1,670 cm−1 in Thy/GO complex, correspondingly. It
could be suggested that these high-frequency shifts are
due to the interaction of Thy with carboxyl and hy-
droxyl groups of GO [33]. The redistribution of the in-
tensity of the bands and a new mode at 3,065 cm−1

are characteristic of Thy/GO complex. Taking into ac-
count the presence of the wide band at 2,960 cm−1 in
the CARS spectrum of GNPs (Figure 6), it could be
assumed that the widening of the CARS spectrum of
Thy/GO complex is an evidence of the electron-phonon
and phonon-phonon resonances [34]. The intensity of the
CARS signals of the Thy/GO complex exceeds the CARS
signals of Thy at more than 104 times.
The study of the Thy/GO complex by CARS spectros-

copy was carried out in two spectral ranges. Both finger-
print and high-frequency ranges revealed strong bands
belonging to Thy. The vibrational contribution to the
spectra is dominating, so obtaining high-quality vibra-
tional images of the complex is a possibility. The CARS
images of Thy/GO recorded at several wavenumbers are
shown in Figure 9. The bands at 1,365 and 1,670 cm−1

and at 2,930, 3,065, and 3,300 cm−1 are used to obtain the
images of two different fragments of the sample. Scans at
2,930, 3,065, and 3,300 cm−1 were done in 50 × 50-μm area
and show the typical fragment entirely. All images have a
very high contrast with respect to the image at 3,300 cm−1,
where the background at non-resonance wavenumber is
shown. It should be mentioned on the basis of comparison
(Figure 9a,c) that the intensity of the CARS band at
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2,930 cm−1 of Thy/GO is higher than that at 1,365 cm−1

(one of the most intensive bands). This fact supports our
assumption regarding the interaction between Thy and
GO modes.
So, from the CARS images, it is seen that the Thy/GO

complex adsorbed on the glass surface is not as a solid
film but rather as flat flakes with lateral size from 1 to
15 μm. It is important to note that the most intensive
CARS bands of GNPs and Thy/GO are, respectively,
at 2,960 and at 2,930 cm−1. So, it could be supposed
that the enhancement of the CARS bands of the Thy/
GO complex in the 2,930- to 3,100 cm−1-range is con-
nected with the chemical interaction between Thy and
GO.
The Raman spectra of Thy and the Thy/GO complex

are shown in Figure 10. In the spectra of Thy/GO, the
characteristic bands of GO (D-, G-, and 2D-modes) are
clearly seen. Also, in the 2,750- to 3,200-cm−1 range, the
enhancement and widening of the characteristic bands
Figure 10 Raman spectra of Thy (1) and Thy/GO (2) at λex =
785 nm. (a) In 1,200 to 1,700 cm−1 range. (b) In 2,400 to 3,200 cm−1

range. The modes of GO are labeled by asterisks (*).
of Thy are observed. Importantly, these bands are the
features of the CARS spectra as well (Figure 8).
The assignment of Raman and CARS spectral bands

for Thy and Thy/GO complex is presented in Table 3.
As a whole, the position of the bands in the Raman and
CARS spectra is often close. In the CARS spectrum of
the Thy/GO complex, there are NH and CH stretching
modes in the 3,000- to 3,300-cm−1 range, and the C6H
stretching modes of medium intensity are at 3,065 cm−1.
It is interesting that in the CARS spectra of the Thy/GO
complex (Table 4), there is only one band at 1,670 cm−1,
whereas in the corresponding spectra of Thy, there are
two bands at 1,655 and 1,660 cm−1, attributed to C4O
and C2O stretching modes, respectively. A similar effect
was observed in the case of SERS of Thy on gold in
comparison with RS of those [35]; however, its nature
could have another origin. It depends on the peculiar-
ities of the CARS method and orientation of Thy in rela-
tion to graphene oxide surface.
To determine the enhancement factor of the CARS

signal for the Thy/GO complex relative to Thy, the fill-
ing factor and the conditions of the CARS experiment
Table 4 Assignment of the spectral bands (cm−1) observed
for Thy and Thy/GO complex

RAMAN (λex = 785 nm) spectra CARS spectra Assignment in Thy
[36-38] and GO [33]Thy Thy/GO Thy Thy/GO

- - - 3,300 ν (OH) in GO

- - - 3,167 ν (NH); ν (OH) GO

3,065 3,065 - 3,065 ν (C6H)

3,006 3,005 - 2,991 ν (CH3)

2,968 2,967 - 2,963 ν (CH3)

2,989 2,989 2,972 2,989 ν (CH3)

2,936 2,936 2,945 2,930 ν (CH3)

2,892 2,897 2,870 - ν (CH3)

- 2,831 - 2,848 CH, GO

2,739 2,738 2,749 2,753 CH

- 2,626 - - 2D-mode in GO

1,673 1,675 1,660 1,670 ν (C2 = O)

- - 1,655 - ν (C4 = O)

- 1,603 - - G-mode in GO

- - 1,520 1,525 ν ring

1,489 1,490 1,482 1,483 δN1H

1,460 1,459 1,461 1,458 δas (CH3)

1,437 - - 1,436 CH3

1,411 1,410 1,406 1,405 νC2N3, δN1H

1,368 1,368 1,355 1,365 δs (CH3), δ (N3H)

- 1,319 - - D-mode in GO

1,247 1,248 1,247 1,249 ν (ring)

ν, stretching; δ, deformation. All bands are assigned to Thy; the bands
assigned to graphene oxide are noted.



Dovbeshko et al. Nanoscale Research Letters 2014, 9:263 Page 9 of 11
http://www.nanoscalereslett.com/content/9/1/263
should be evaluated. In CARS experiments, the radiation
comes from the space volume of approximately 1 μm3.
Such volume can contain approximately 109 molecules
of Thy (without graphene). When GO is added to Thy,
in accord with our estimation, the number of Thy mol-
ecules within the mentioned volume is approximately
108. Then, taking into account these assumptions and
the difference between the intensity of the CARS sig-
nal for the Thy/GO complex and Thy from Figure 8
(approximately 104), we could obtain that the CARS
enhancement factor is equal to approximately 105. The
enhancement obviously arises from those molecules of
Thy which are in close proximity to the surface of GO.
The number of such Thy molecules is really lower
than the whole number of the molecules in the vol-
ume. So, the obtained estimation of the enhancement
factor should be considered as the lower limit. It could
also be mentioned that the value of the enhancement
factor is not the same for the whole range from 1,200
to 3,300 cm−1. It is the maximum for the NH and CH
stretching modes which usually appear in 3,000- to
3,200-cm−1 range (Figure 8b).
The enhancement effect of the CARS spectrum of the

Thy/GO complex seems to be similar to that of SECARS
(Figure 8), and it could be named as graphene oxide-
enhanced CARS (GECARS), analogous to the graphene-
enhanced Raman scattering (GERS) technique, in which
graphene can be used as a substrate for SERS of adsorbed
molecules [9,11,39].
SERS enhancement is typically explained by CM [40]

and EM [1,41-43] mechanisms. CM is based on charge
transfer between the probed molecule and the substrate.
On the other hand, the origin of EM mechanism is con-
nected with great increase of the local electric field
caused by plasmon resonance in nanosized metals, such
as Ag and Au [41]. These two mechanisms always con-
tribute simultaneously to the overall enhancement, and
it is usually thought that EM provides the main en-
hancement. For graphene-type materials, due to the fact
that surface plasmon in graphene is in terahertz range
rather than within the range of visible light [44], GERS,
in most cases, does not support the EM mechanism, and
it is more appropriate to consider the CM. However, in
the case of the GO, the oxygen-containing groups could
create strong local electric field [45] under laser excita-
tion, so large polarizability of graphene domains induces
additional local electric field and increases the cross-
section of RS of the adsorbed molecules. Additional en-
hancement could be explained by resonant excitation for
one or two photons in the case of CARS of nanocarbons
(Table 1) also. Indeed, our optical study in the near-
visible range confirms the appearance of local density
states of MWCNTs and GNPs in the region of 500
to 900 nm. So, resonant excitation could be the other
reason of giant enhancement in CARS. All this mecha-
nisms need further study and analysis.

Conclusions
Therefore, it was shown that the CARS spectra of car-
bon nanostructures (GNPs, GO, and MWCNTs) are def-
initely different from the corresponding spontaneous
Raman spectra. At the same time, the CARS and Raman
spectra of Thy are rather close and could be used for
analytical purposes. The GECARS effect was shown for
the Thy/GO complex with minor shifts of Thy bands.
The enhancement factor of the GECARS signal for the
Thy/GO complex is greater than approximately 105. In
our view, the enhancement effect could have several rea-
sons: (a) the so-called chemical mechanism, which in-
volves charge transfer between the molecule and the
carbon nanostructure, as well as the increase of the di-
pole moment in the molecule; (b) the resonant inter-
action of exciting light with electronic states of the
carbon nanostructures; and (c) the increase the local
electromagnetic field at the edges of the GO nanosheets.
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